
Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer

length

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 S1709

(http://iopscience.iop.org/0953-8984/15/18/305)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/18
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) S1709–S1723 PII: S0953-8984(03)58905-6

Dynamic single-molecule force spectroscopy: bond
rupture analysis with variable spacer length

Claudia Friedsam, Angelika K Wehle, Ferdinand Kühner and
Hermann E Gaub

Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität
München, Amalienstraße 58, 80799 München, Germany

Received 29 January 2003
Published 28 April 2003
Online at stacks.iop.org/JPhysCM/15/S1709

Abstract
Dynamic force spectroscopy is a valuable technique to explore the energy
landscape of molecular interactions. Polymer spacers are typically used to
couple the binding partners to the surfaces. To illustrate the impact of polymer
spacers on the measured rupture force and loading rate distributions we used
a Monte Carlo simulation, which was adjusted step by step towards realistic
experimental conditions. We found that the introduction of a polymer spacer
with a discrete length had only a marginal effect. However, a distribution
of polymer spacers with different lengths may induce drastic changes on the
distributions.

Three different methods for data analysis were then tested with regard to
their ability to reproduce the input values of the Monte Carlo simulations. We
found that simple linearization of all data points leads to an analysis error up to
one order of magnitude for the dissociation rate and one-third for the potential
width. The best results are achieved by determining the dissociation rate and
the potential width directly with a probability density function for the rupture
forces and the loading rates as a fit function that uses the dissociation rate and
the potential width as fit parameters. By applying this method the analysis
errors could be reduced below 25% for the dissociation rate and only 3% for
the potential width.

Applied to a set of experimental data this method proved to be extremely
useful and provided detailed information on the distributions. We are able
to discriminate specific and non-specific contributions of an aptamer–ligand
interaction and correct for the non-specific background. In addition, this
procedure allowed us to account for the low force instrumentation cut-off and
reconstruct the rupture force and force rate distributions.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Biomolecular bonds between large macromolecules result from an interplay of several weak
interactions that combine to create a very stable aggregate. The constructs they form show in
general long lifetimes and may withstand sizable mechanical loads.

Looking at one isolated bond which contributes to such an aggregate one may get a quite
contrary impression: on timescales longer than its natural lifetime for spontaneous thermally
driven dissociation, an isolated single bond has no strength and will dissociate under zero
force. Consequently the lifetime of the bond may be shortened by external forces. This was
first described by Bell [1] in 1978 who pointed out that bond failure is a statistical process and
that the lifetime of a bond depends on the mechanical load. Bell’s basic approach was refined
by Evans et al in 1991 [2] and others who afterwards worked out a more extensive theory
about the physics that underlies bond strength [3]. This theory was supported by numerous
experimental results [4]. Dynamic force spectroscopy became a prominent method which
provided new insight into the inner world of molecular interaction. Many of the common
techniques make use of a polymer as spacer between the force sensor and the bond under
investigation. The polymer can be regarded as an additional nonlinear spring. Thus—if the
polymer is softer than the force sensor—the bond is subject to a non-steady loading rate. The
effect of such a soft molecular linkage on the strength of a weak connecting bond has been
examined in a theoretical way by Evans and Ritchie [5]. Building on the work of previous
authors we used a Monte Carlo simulation to illustrate the impact of the polymer spacer on the
distribution of the measured data points and to identify the optimal method for data analysis.
The results of this study will give an overview about the relationship between the properties
of the linkers and the distribution of the measured rupture forces. Step by step we provide a
way to bridge the gap between measured and simulated data.

2. Theory

In most experiments bond dissociation occurs under dynamic load [6] and the theory has been
worked out in great detail. Here we just want to present a shortened approach, which leads us
to the central equations to which we will refer to in the course of this report.

The first theory concerning the reaction rate was developed by Arrhenius. Due to him the
rate of dissociation λ is given by the Van’t Hoff–Arrhenius law [7]:

λ = ν exp

(
− �G

kB T

)
. (1)

Here ν is the natural vibration frequency of the bond in vacuum, �G is the free enthalpy, kB is
the Boltzmann constant and T is the temperature, respectively. For our applications we need a
description of bond dissociation in liquids. Therefore we make use of the Kramers theory [8]
and get an expression for the force dependent rate of dissociation in liquids:

λ(F) = ωminωmax

2πγ
exp

(
− (�G − F�x)

kB T

)
= k∗

of f exp

(
F�x

kBT

)
. (2)

Here ωmin signifies the angular frequency of the metastable state, ωmax the positive valued
angular frequency of the unstable state at the barrier, γ the damping relaxation rate, �x the
potential width and k∗

of f the natural off-rate.
The rate of dissociation can be used to describe the decline of the existing bonds NB with

time,
dNB

dt
= −λ(t)NB . (3)
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We obtain the number of intact bonds at time t by integration of equation (2):

NB (t) = exp

(
−

∫ t

0
dt ′ λ(t)

)
. (4)

According to this the number of dissociated bonds ND at time t is given by

ND(t) = 1 − NB (t) = 1 − exp

(
−

∫ t

0
dt ′ λ(t)

)
. (5)

Assuming that the force is a reversible continuous function of time, time can be replaced by
force, which results in the following expression:

ND(t) = 1 − exp

(
−

∫ F

0
d f ′ λ(F)

1

ḟ

)
. (6)

The probability p(F) that the bond breaks if the force F acts on it is given by dND
dF :

p(F) = dND

dF
(F) = λ(F)

1

Ḟ
exp

(
−

∫ F

0
λ(F)

1

ḟ
d f

)
. (7)

Equation (2) put into (7) leads to

p(F) = k∗
of f exp

(
F�x

kB T

)
1

Ḟ
exp

(
−k∗

of f

∫ F

0
exp

(
F�x

kB T

)
1

ḟ
d f

)
. (8)

The maximum of this distribution points to the most probable rupture force F∗. It can be found
by derivation:

d

dF

(
dPD

dF
(F)

)
= 0. (9)

Assuming that the loading rate Ḟ is independent of the force F we get a linear dependence of
F∗ on the logarithm of the loading rate Ḟ :

F∗(Ḟ) = kB T

�x
ln

(
Ḟ

k∗
of f

�x

kB T

)
. (10)

If we make use of a soft polymer spacer the loading rate which acts on the bond under
investigation is changing continuously while the polymer is stretched. Therefore the condition
that Ḟ is independent of F is not fulfilled in our case and equation (10) is only an approximate
description of our problem.

Equation (8) as well as equation (10) can be used to determine the natural off-rate k∗
of f and

the potential width �x for a given distribution of rupture forces and corresponding loading
rates. We will discuss this in detail below.

3. Monte Carlo simulations

In order to illustrate the influence of the polymer spacer and to generate a set of model data a
Monte Carlo simulation was created and adjusted step by step to more realistic experimental
conditions. The principle stays the same for all three types of Monte Carlo simulation:
equation (2) is used to determine the probability for the bond rupture during the time slice
�t ,

�ND = −�NB = −λ(t)�t = −λ(F(t))�t = k∗
of f exp

(
F�x

kB T

)
�t . (11)

This probability is compared to a random number between zero and unity. If the random
number is smaller than �ND the corresponding force is noted as the rupture force and the next
iteration of the simulation is started. k∗

of f and �x are the two input values of the simulation.
F(t) determines the results.
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3.1. Constant force rate

In the simplest case we assume a linear dependence of the force on time. In the simulation
this is realized by a force which increases linearly with the distance between the force sensor
and the opposing surface which are separated with the velocity v. F(t) is then given by

F(t) = dF

dz
vt with

dF

dz
= constant, v = constant. (12)

3.2. Polymer spacer

In this simulation a polymer with a discrete length is introduced. The stretching of single
polymers is well described by an extended Langevin function [9, 10]:

z(F) = L1 NM

(
coth

(
F L K

kB T

)
− kB T

F L K

)
+ NM

F

KM
. (13)

Here L1 represents the monomer length, L K the Kuhn length, NM the number of monomers
and KM the monomer elasticity.

Certain polymers undergo conformational transitions upon stretching. As shown
previously this can be modelled by a Markovian two-level system [11] and can be considered
in the extension–force relation in the following way:

z(F) = NM

(
L2

e−�G12/kB T + 1
+

L1

e�G12/kB T + 1

)(
coth

(
F L K

kB T

)
− kB T

F L K

)
+ NM

F

KM
+

F

k
(14)

where L1 signifies the monomer length in the initial conformation, L2 the monomer length
after the conformation transition and �G12(F) the energy difference between the two states
dependent on the applied force. For our calculations we additionally have to consider the
deflection of the force sensor which is represented by the last term, where k means the
spring constant of the force sensor. We can use this relation to determine F(t (z)) and
Ḟ(t (z)) = (dF/dz)∗v with t (z) = z/v. This type of simulation was used to demonstrate
the influence of the elastic properties of the used polymer spacer on the distributions.

3.3. Gaussian and rectangular spacer lengths distributions

Under realistic experimental conditions polymers show a length distribution which can be
determined by fitting the experimental data. We have expanded the Monte Carlo simulation
once again in such a way that it can operate on a given distribution of monomers. To realize
this the simulation is done separately with every number of monomers that appears in the
distribution. The number of iterations for every number of monomers is equal to its occurrence
in the monomer distribution. Finally all data points are collected in a histogram. We let this
simulation operate on a Gaussian length distribution and a rectangular length distribution.

4. Data analysis

Each simulation was performed ten times for ten different velocities of the force sensor,
ranging from 100 to 1000 nm s−1 with steps of 100 nm s−1. This way we create ten different
distributions of (F∗, ln(Ḟ)) data pairs for certain input values of �x and k∗

of f . Altogether
we create five sets of ten distributions for every type of simulation. These distributions were
then analysed by three different methods. The resulting k∗

of f and �x of the different analysis
methods were then validated by comparison with the initial values of the simulations.
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Figure 1. Illustration of the three methods described. (a) Method 1: diagram with all data points
delivered by the polymer spacer simulation and best fit straight line. (b) Method 2: linearization
of the most probable rupture forces and their loading rates. The maxima are determined in the
histograms of the bond rupture forces and are plotted against the corresponding loading rates for
the ten different velocities. The best fit straight line is determined for the ten resulting data pairs.
(c) Method 3: one example for a histogram of the rupture forces and a histogram of the loading
rates (logarithmic scale) for the rectangular length distribution simulation each overlaid with the
best fit. The dissociation rate and the potential width are directly determined as fit parameters.

In method 1 we just use all data pairs we obtained from the Monte Carlo simulation, plot
them in a force over ln (loadingrate) diagram and determine the best fit straight line. The
procedure is depicted in figure 1(a). On the basis of this line fit we can use equation (10) to
determine k∗

of f and �x ,

�x = kB T

m
(15)

k∗
of f = Ḟ(F = 0)�x

kB T
(16)

where m signifies the slope of the best fit straight line.
Method 2 determines the maxima of the rupture forces and the corresponding loading rates

for each velocity and just plots these 10 points in the force over ln (loadingrate) diagram. The
rest of the analysis is analogous to method 1.

Method 3 (figure 1(c)) simply builds the mean value of the dissociation rates and the
potential widths we obtained directly from the best fit curves which use these two sizes as fit
parameters.

The fit curve is determined in the following way in each case.
For the linear force ramp we just use the constant loading rate Ḟ to calculate the pdf (pdf

means probability density function) for the rupture force. The loading rate is discrete for every
velocity in this case and therefore no separate fit is required.
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Figure 2. Construction of the pdfs. The upper part of the diagram illustrates how the pdfs for the
bond rupture forces and their loading rates are determined in the case of a polymer spacer with
a discrete length: each force is assigned to a loading rate by the polymer curve. Exploiting this
relationship, the pdfs can be calculated. The pdf of the loading rates is just a ‘translation’ of the
pdf for the rupture forces: each loading rate is assigned to a rupture force—again by the use of the
polymer fit curve—and weighted with its proportion in the pdf of the forces. The lower part of the
diagram shows how these single pdfs can be overlaid to form the fit function if the polymer spacers
show a length distribution: the single pdfs have to be additionally weighted with the occurrence of
their number of monomers Ni in the number of monomers distribution. Finally, all single probability
density functions are added to form the final fit function which is in a last step normalized.

In the case of the polymer spacer with discrete length every F is assigned to the
corresponding loading rate Ḟ which was determined using the fit curve (equation (15),
figure 2(a)) for the polymer. This results in a function Ḟ(F) which can be used to determine
the pdf for the rupture force. This pdf of the force was translated into the pdf of the loading
rates by weighting the loading rate Ḟ(F) with the probability of the corresponding force F .

For the distribution of polymer spacers with different lengths (figure 2(b)) we calculated
the pdf of the force for each spacer length separately, weighted this distribution with the
occurrence of the spacer length in the length distribution and added all these curves to obtain
the final fit function. To determine the fit function for the loading rate the pdf was again
translated into a pdf of the loading rate for each spacer length the way we did it above. The
pdfs were again weighted with the occurrence of the spacer length in the length distribution
for the polymer spacers and added to obtain the final fit function.

5. Results for the model data

In figure 3 the probability densities for the rupture forces and the loading rates which result
from the four different types of simulation are plotted. The pdf for the single polymer spacer is
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Figure 3. Pdfs of the rupture force and of the loading rate respectively for the four types of
simulation. The input values were in all cases k∗

of f = 0.05 s−1 and �x = 3 Å. The velocity

of the force sensor was 100 nm s−1. The linear force ramp in the constant force rate simulation
had a slope of 14 pN nm−1. The polymer in the polymer spacer simulation is represented by a
polyethyleneglycol with NM = 150 monomers and the following fit parameters [12]: L1 = 2.8 Å,
L2 = 3.58 Å, �G12(F) = 40 eV, L K = 7 Å, KM = 150 N m−1 and k = 0.01 mN m−1. The
Gaussian length distribution simulation works with a narrow Gaussian distribution for the number
of monomers N of the polymer spacer with N̄ = 150 and σN = 10 and the rectangular length
distribution simulation is based on a rectangular distribution ranging from 1 to 150 monomers.
(a) Pdfs of the rupture force. (b) Pdfs of the loading rates.

broadened compared to the one for the linear force ramp and the most probable rupture force
is slightly shifted. The difference between the function for the single polymer spacer and the
one for the Gaussian spacer length distribution is so small that it is not visible on this scale
whereas the pdf for the rectangular distribution of polymer lengths differs significantly from
the other ones: it is much broader and the most probable rupture force is shifted to higher
values. The shape of the function is also different: it has completely lost the characteristics
of an extreme value distribution. The obtained distribution is an overlay of many different
extreme value distributions which results in the symmetric shape.

The linear force ramp results in a discrete loading rate for a given velocity of the force
sensor. A polymer spacer with a discrete length results in a distribution of loading rates which
is slightly broadened when a Gaussian length distribution is assumed for the polymer. In the
case of the rectangular length distribution a very wide range of loading rates is obtained.

In figure 4 the rupture forces are plotted against the logarithm of the corresponding loading
rate for each type of simulation. In the case of the linear force ramp (see figure 4(a)) the ten
simulated velocities of the force sensor result in ten discrete loading rates. For each loading
rate the forces show a distribution which follows the pdf of the rupture forces. When a polymer
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Figure 4. Distribution of the Monte Carlo data in an F over ln(Ḟ) diagram for the four types of
simulation. The input values were again k∗

of f = 0.05 s−1 and �x = 3 Å. (a) Constant force rate

simulation: the linear force ramp had a slope of 14 pN nm−1. (b) Polymer spacer simulation: the
polymer was represented by a polyethyleneglycol with NM = 150 monomers and fit parameters as
in [12]. (c) Gaussian spacer length distribution simulation: the parameters of the Gaussian length
distributions were N̄ = 150 and σN = 10. (d) Rectangular spacer length distribution simulation:
the rectangular distribution ranged from one to 150 monomers.

spacer is introduced (see figures 4(b) and 3(a)) different rupture forces F are correlated with
different loading rates Ḟ(F). Thus for every velocity the data points lie on a curve which
reflects the elastic properties of the polymer spacer. A narrow Gaussian distribution in length
broadens these curves (see figure 4(c)). The rectangular length distribution results in 150
curves for each velocity. Altogether, a rather continuous distribution of (F, Ḟ) data pairs for
the ten velocities is obtained. Only on the edges of the whole distribution are the curves for
150 and one monomer(s) discernible.

In figure 5 the results for the three methods of data analysis are plotted. Method 1 delivers
satisfactory results only in the case of the linear force ramp: the potential width can be
determined with a deviation of about ±3% but the values for the dissociation rates are all
too high; they differ from the input value by a factor of about two. This can be explained in the
following way: equation (10) is deduced from requirement (9). Therefore it is inevitable to
use the most probable rupture forces and the corresponding loading rates for the ten simulated
velocities to perform the linearization. In the case of the linear force ramp the linearization of
all data points is equal to the linearization of the mean rupture forces of the ten given loading
rates. As the mean rupture forces are slightly smaller than the most probable rupture forces
the best fit straight line is shifted downwards and as a result the rate of dissociation determined
with the help of equation (15) is too high. Applied to the polymer spacer simulation one ends
up with a deviation of about one-third for the potential width and about one order of magnitude
for the dissociation rate. The reason for this huge difference is that the possible data pairs
(F, Ḟ) for a certain velocity of the force sensor are determined by the polymer spacer and
thus the possible rupture force for a given loading rate in general is neither identical with the
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Figure 5. Results for the three tested methods of data analysis. Each of them is performed with
the four different types of simulation illustrated in figure 4. In this succession of the methods the
deviations from the input values from above decrease continuously. (a) Method 1: linearization of
all data points. (b) Method 2: linearization of the maxima in the histograms. (c) Method 3: mean
values of the determined fit parameters.

mean rupture force nor with the most probable rupture force, which belongs to the investigated
bond for the given loading rate. The circumstances are more or less the same in the case of the
Gaussian length distribution of the polymer spacer. On the other hand, the results get better for
the rectangular length distribution. The deviation for the potential width is approximatively
15% and for the dissociation rate about a factor of eight. This is due to the fact that with the
exception of the left-hand edge and the right-hand edge of the distribution of data points the
system can adopt a variety of possible rupture forces for a given loading rate and therefore
comes closer to the situation of the linear force ramp.

Method 2, which heeds the condition (9) and delivers values for k∗
of f and �x , is the com-

monly used type of analysis for dynamic force spectroscopy. Applying this type of data analysis
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Figure 6. Set-up of the AFM experiment: the cantilever is aminosilanized and functionalized with
carboxymethylamylose to which the aptamers are covalently bound in the side groups. The glass
side is also aminofunctionalized and coated with carboxymethylamylose to which the human Ig-E
is linked. The aptamers and the human Ig-E are allowed to form bonds during the experiment. As
all other bonds are covalent and therefore much stronger the aptamer–Ig-E bond is ruptured when
the cantilever is retracted.

one can obtain results that come relatively close to the input values for all four types of simu-
lation (deviation for the potential width, at maximum 15%; deviation for the dissociation rate,
at maximum a factor of two). The deviations for the dissociation rate can be easily explained
if one remembers that equation (10) was derived under the condition that the loading rate Ḟ is
independent from the rupture force F which is questionable in our case where every loading
rate Ḟ is attributed to one rupture force F via the polymer curve. Therefore equation (10) just
represents an approximation to our problem and it is quite natural that deviations appear.

On the other hand, method 3 is only based on equation (8) which is an exact description of
our problem. Due to this the results get better, the deviations are reduced to round 3% for the
potential width and to round 25% for the dissociation rate, respectively. As a final conclusion
it should be noted that this method represents the best approach to analyse experimental data
in a sensible way.

6. Transfer to the experiment

In order to test the feasibility of our method with experimental data, we analysed a series of
AFM measurements, which investigated the affinity of aptamers to human Ig-E antibodies.

Aptamers [13] are small, in vitro selectable single-stranded nucleic acids that are capable
of binding proteins and other molecules with specificity and dissociation constants similar to
those of antibodies. The aptamer D17.4ext (ext is the abbreviation for an extended D17.4 [14])
has a length of 45 nucleic acids and forms a stem–loop structure, which has a dissociation
constant (Kd) of about 3.6 nM for human Ig-E [15]. The cantilever was functionalized with
the aptamer via polymerspacers—in our case carboxymethylamylose—to avoid nonspecific
binding. The human Ig-E was immobilized in the same way on the substrate. The set-up is
shown in figure 6. One example for measured bond rupture histograms and their corresponding
loading rates is shown in figure 7.
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Figure 9. (a) Example where the identification of non-specific contributions was possible:
histogram of the rupture forces, histogram of the loading rates and histogram of the number of
monomers of the polymer spacer (which reflects the rupture length distribution). It is not possible
to fit the force histogram and the loading rate histogram as a whole, if the calculation is based on the
whole monomer distribution. Instead the distributions can be fitted with two different fit function
with k∗

of f = 0.22 s−1 and �x = 3.5 Å for the lower force regime and k∗
of f = 2.5 × 10−5 s−1

and �x = 7 Å for the higher force regime, respectively. (b) Histograms of the rupture forces and
histogram of the loading rates with an overlaid fit, for the case where just the part of the monomer
distribution shown on the right is taken into consideration. The distributions can be fitted as a
whole with k∗

of f = 0.22 s−1 and �x = 3.5 Å.

We found that most of the distributions for the rupture forces and their loading rates
can be fitted consistently by the developed fit functions (method 3) and deliver values for the
dissociation rates between 0.17 and 0.3 s−1 and for the potential widths between 2.8 and 3.5 Å,
respectively.

If the spacer length distribution shows discrete peaks different length regimes can easily
be attributed to different bond rupture force and loading rate regimes. Figure 8 shows how
these different contributions overlay to form the overall distributions which can be fitted with
a potential width of 3.3 Å and a dissociation rate of 0.22 s−1.

In some cases it was not possible to fit the distribution of rupture forces and the distribution
of loading rates with the same set of fit parameters. By separately analysing the bond rupture
events which belong to the third peak in the polymer length distribution, we obtain the
histograms shown in figure 9(b). The best fit of the distributions results in a potential width of
3.5 Å and a dissociation rate of 0.22s−1 which is well comparable to the values obtained before.
In turn by analizing the second peak in the bond rupture histogram of figure 9(a) separately
we obtain values of 7 Å and 2.5 × 10−5 s−1 for the potential width and the dissociation
rate, respectively, which could be explained by a non-specific adsorption of the protein. This
procedure allows to separate different classes of events by analizing the populations in the
histograms individually.
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because of the instrumental resolution limit: if we rely only on events with rupture forces over 40
pN the distributions are fitted with k∗

of f = 0.2 s−1 and �x = 2.9 Å as fit parameters. The dashed
curve again represents a schematic drawing of the cut-off function of our instrument.

In figure 10 the distributions obtained for a very low velocity are depicted. The attempt to fit
both distributions of rupture forces and loading rates simultaneously fails. Since a conservative
estimate of the signal to noise ratio of our instrument lowers the force resolution to 40 pN,
only higher rupture forces in the histogram in figure 10 were used for further analysis. With
this limitation the distributions can be fitted with values of 2.9 Å for the potential width and
0.2 s−1 for the dissociation rate. These values correspond well with the ones we obtained from
other experiments. At least partially, this method also allows us to analyse nearly truncated
histograms in a meaningful way.

7. Conclusions

Following the course of the four different Monte Carlo simulations one gets an impression of
the changes in the distributions if the simulation is adjusted step by step to more realistic experi-
mental conditions. The introduction of the polymer spacer leads to a distribution of the loading
rates and induces a variation in the force distribution. Dependent on its shape a length distribu-
tion of the polymer spacer may alter the results for the rupture forces noticeably. Thus for some
cases it is essentially necessary to implement the experimentally determined length distribution
in the simulation in order to obtain data that are comparable to the experimental results.

We used the distributions produced by the Monte Carlo simulations as model data in
order to identify the best among three tested methods for data analysis. Simple linearization
of all data points is a systematically wrong method and in most cases leads to obviously
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wrong results. Hence this method cannot be recommended for any of the simulated situations.
Alternatively rather good results are obtained if the most probable rupture forces and their
loading rates for the different velocities are linearized. But it is most favourable to determine
the rate of dissociation and the potential width directly as fit parameters when we approximate
the distribution of the rupture forces with a fit-function that is based on equation (8).

The application of this method to experimental data leads to very convincing results and
reveals detailed information. We found in a certain number of experiments a very clear fit of the
histograms to one set of potential width and dissociation rate values. In other experiments there
was an overlay with non-specific interactions,but they could be separated by separately treating
certain peaks in the number of monomers distribution of the polymer spacer. In other cases
these non-specific signals overwhelm the specific contribution and no meaningful fit to these
histograms was possible. Anyway, this may be due to the multiplicity of possible non-specific
interactions, which, if they dominate the histograms, cannot be separated any more.

From the practical point of use the reconstruction of the histogram in the ‘blind spot’ of
the instrument seems most attractive and has in our hands helped to markedly relativize the
interpretation of data in the low force regime.
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